top of page
tech-bg.png

Sonus Array Technology

Revolutionizing Ultrasound witH

For nearly a century, ultrasound imaging has relied on piezo-ceramic sensors to generate the sound waves that create diagnostic images. Despite incremental advancements like higher resolution screens and smaller electronic components, the fundamental technology has remained largely unchanged.

Until now

Sonus is transforming ultrasound imaging with cutting-edge polymer MEMS technology. Our innovative approach enables ultrasound transducers to be produced more quickly, at a fraction of the cost, and in highly customizable form factors. We are dedicated to advancing this technology to open new possibilities for ultrasound, extending its reach far beyond traditional applications and redefining its potential in healthcare.

How it Works

Image of Sonus Microsystem single sensor made from advanced polymers

01

Sonus Array Technology uses tiny, flexible ultrasound sensors made from advanced polymers.

Image showing vibration of polymer sensor in Sonus Microsystem technology

02

Our unique approach layers together metals and polymers to form intricate membranes called polyCMUTs, that vibrate at high frequencies to create clear, detailed images.

Image of Sonus Microsystem sensor array

03

The compact size and flexibility of these sensors allow them to be arranged in various shapes and configurations for highly efficient customizable solutions.

Image showing the transducer on the Sonus Microsystems cardiac patch

04

By replicating thousands of these tiny sensors across a surface, we can build high performance transducers tailored to a wide range of medical imaging applications, such as the Sonus Patch shown here.

tech-sec3-bg.png

Enhanced
Performance

In a head-to-head comparison, the Sonus polymer transducer demonstrated nearly double the bandwidth of current ultrasound probes on the market, while maintaining comparable sensitivity and uniformity. This increased bandwidth enhances image resolution and sharpness across a broader range of tissue types.

Table comparing Sonus polymer transducer capabilities to ultrasound probes on the market

*most recent Sonus Array design

**range of readings from various commercial probes

tech-sec5-bg.jpg

Unlocking Novel Applications

With our Sonus Array Technology, ultrasound applications are limitless. Partner with us to discover how polymer based ultrasound transducers can change your business.

Fast prototyping

Expedited time-to-production

Reduced R&D costs

Transducer drums have typically been made out of rigid silicon materials that require costly, environment-controlled manufacturing processes, and this has hampered their use in ultrasound. By using polymer resin, we are able to produce polyCMUTs in fewer fabrication steps, using a minimum amount of equipment, resulting in significant cost savings and unique capabilities.

Dr. Robert Rohling 

UBC Professor, Medical Ultrasound

Headshot of Dr. Rob Rohling, co-founder of Sonus Microsystems and medical ultrasound expert
hp-sec8-bg.jpg

Be part of the Ultrasound Revolution.

bottom of page